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Constraints and Logic Programming 

• All problems involving finite domains (including booleans, and sets) 

may be solved, in principle, with logic programming (LP) alone. 

 (after all, finite domains are a subset of the Herbrand Universe: constants).  

• Why should one move towards Constraint Programming (CP), rather 

than staying within LP?  

– Greater Efficiency:   

• Most combinatorial problems are more easily solved by 

constraint propagation than simple generate and test 

implemented in LP. 

– Greater Expressiveness:  

• Specific constraints are harder to express in LP (e.g. 

conditional constraints, global constraints). 
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Constraints and Logic Programming 

• If propagation of constraints is so important for solving constraint 

(satisfaction / optimisation) problems why not to abandon LP 

altogether and move towards  Constraint Logic Programming (CLP). 

– Modelling   - Declarativeness  

• LP features such as unification (allowing flexible input/output 

parameters) and backtracking provide a declarative style of 

programming where constraints can be very easily 

expressed. 

– Natural extension:  

• The semantics of LP already assume a special type of 

constraint processing – equality of Herbrand terms.   

• All that CLP requires is an extension of this constraint solving 

capabilities to other useful domains. 
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Operational Semantics of CLP 

• The operational semantics of CLP (LP is a special case) can be described 

as a transition system on states. 

• The state of a constraint solving system can be abstracted by a tuple 

<G, C, S >  

 where  

– G is a set of constraints (goals) to solve 

– C is the set of active constraints 

– S is a set of passive constraints  

• Sets C, S are considered the Constraint Store. 

• A derivation is just a sequence of transitions. 

• A state that cannot be rewritten is a final state. 

• An executor of CLP (LP) aims at finding successful final states of 

derivations starting with a query. 
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Operational Semantics of CLP 

• A derivation is failed if it is finite and its final state is fail.  

• A derivation is successful if it is finite and processes all the 

constraints, i.e. it ends in a state with form  

<Ø, C, S >  

• The state transitions  are the following 

 S(elect): Select a goal (constraint) 

 

 

 

• It is assumed that  

– A computation rule selects some goal g, among those still to be 

considered. 

– This goal requires some constraint c to be solved and/or further 

goals, G’, to be considered 

g requires solving constraint c and other goals G’ 

< G  {g}, C, S >  s < G  G’,C, S  {c} >  
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Operational Semantics of CLP 

• The other transition rules require the existence of two functions, 
infer(C,S) and consistent(C), adequate to the domains that 

are considered.  

• I(nfer): Process a constraint, inferring its consequences 

 

 

 

• C(heck): Check the consistency of the Store 

(C’, S’) = infer(C,S) 

< G, C, S >  i < G, C’, S’ >  

consistent (C) 

< G, C, S > c < G, C, S >  

¬ consistent (C) 

< G, C, S >  c fail 
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Operational Semantics of CLP 

In Logic Programming 

• Handling a goal g is simply checking whether there is a clause h ← B 

whose head h matches the goal. In this case, the equality constraint 

between Herbrand terms g=h is added to the passive store.  

 

 

• Function infer(C,S) performs unification of the terms included in g 

and h, after applying all substitutions included in C 

 function infer(C, g=h)  

  if unify(g↑C,h↑C, C’) then infer=(success, C’) 

  else infer = (fail,_); 

  end function 

• Checking consistency is simply checking whether the previous 

unification has returned success or failure (of course, in practice the 
two functions are merged).  

g is a goal     h  B  

< G  {g}, C, S > s < G  B, C, S  {h = g} >  
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Operational Semantics of CLP 

• For example, assuming that 

– C = {X / f(Z), Y / g(Z,W)}   % a solved form 

– G includes goal p(Z,W) 

– there is a clause p(a,b) :- B. 

 

 then the following transitions take place, when goal p(Z,W) is 
“called” 

 < G , {X/f(Z), Y/g(Z,W)}, {} > 

   →s % goal selection  

 < G\{g}B, {X/f(Z), Y/g(Z,W)}, {p(Z,W) = p(a,b)}} > 

   →i,c % unification  

 < G\{g}B, {X/f(a), Y/g(a,b), Z/a, W/b}, {} > 

 



8 

Operational Semantics of CLP 

In Constraint Logic Programming 

• Handling a goal g is as before. Handling a constraint in a certain 

domain, usually built-in, simply places the constraint in set S. 

.  

 

• Function infer(C,S) propagates the constraint to the active store, by 

methods that depend on the constraint system used. Tipically, 

– It attempts to reduce the values in the domains of the variables; or  

– obtain a new solved form (like in unification) 

• Checking consistency also depends on the constraint system.  

– It checks whether a domain has become empty; or  

– It was not possible to obtain a solved form. 

g is a constraint 

< G  {g}, C, S > s < G, C, S  {g} >  
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Operational Semantics of CLP 

A positive example 

• Assuming that variables A and B can take values in 1..3, then the 

constraint store may be represented as 

C,S = {A in 1..3, B in 1..3}, { } 

• Rule S: If the constraint selected by rule S is A > B, then the store 

becomes 

C,S = {A in 1..3, B in 1..3}, { A > B} 

• Rule I: The Infer rule propagates this constraint to the active store, 

which becomes 

C,S = {A in 2..3, B in 1..2,  A > B}, {  } 

• Rule C: The system does not find any inconsistency in the active 

store, so the system does not change. 
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Operational Semantics of CLP 

A negative example 

• Assuming that variables A and B can take, respectively values in the 

sets {1,3,5} and {2,4,6}. The constraint store may be represented as 

C,S = { A in {1,3,5}, B in {2,4,6} }, { } 

• Rule S: If the constraint selected by rule S is A = B, the store 

becomes 

C,S = { A in {1,3,5}, B in {2,4,6} }, { A = B } 

• Rule I: The rule propagates this constraint to the active store. Since 

no values are common to A and B, their domains become empty 

C,S = {A in {}, B in {} }, {  } 

• Rule C: This rule finds the empty domains and makes the transition 

to fail (signalling the system to backtrack in order to find alternative 

successful derivations). 
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(C)LP solutions 

• In LP and CLP, solutions are obtained by inspecting the constraint 

store of the final state of a successful derivation. 

• In systems that maintain a solved form (like LP, but also constraint 

systems CLP(B) for booleans, and CLP(Q), for rationals), solutions 

are obtained by projection of the store to the relevant variables.  

 For example if the initial goal was p(X,Y) and the final store is 

{X/f(Z,a), Y/g(a,b), W/c} 

 then the solution is the projection to variables X and Y 

{X/f(Z,a), Y/g(a,b)} 

• In systems where a solved form is not maintained, solutions require 
some form of enumeration. For example, from 

C = {X in 2..3, Y in 1..2,  X > Y}, 

 the solutions <X=2;Y=1>, <X=3;Y=1> and <X=3;Y=1>, are 

obtained by enumeration. 



Propagação e Pesquisa 

• Consistência de: 

– Nó 

– Arco 

– Intervalo 

– Arco generalizada  (restrições globais) 

• Heurísticas: 

– Escolha de variável (e.g. first-fail) 

– Escolha de valor 
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CLP(FD) no SICStus 

:- use_module(library(clpfd)). 

 

• Domínio (inteiros): 

– domain(+Vars, +Min,+Max) 

– ?Var in +Range 

• Enumeração: indomain/1, labeling/2 

• Otimização: 
minimize/maximize(Goal,?X) 
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Restrições 

• Aritméticas: 

#=, #\=, #>, #<, #>=, #=< 

• Proposicionais: 

#\/, #/\, #=>, #<=>, e #\ (/1:not, /2: xor) 

• Reificação: 

#<=> 
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Restrições Globais 

• sum(+Xs, +RelOp, ?Value) 

• minimum(?Value,+Xs)  e  maximum(?Value,+Xs) 

• global_cardinality(+Xs,+Vals) 

• all_different/1,2  (acúcar sintático) 

• all_distinct/1,2 

• element(?Index, +List, ?Value) 

• assignment(+Xs, +Ys) 

• circuit(?Succ) 

• disjoint2(+Rectangles) 

• cumulative/1,2   e   cumulatives/2,3 
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